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Establishing a minimal microscopic model for cuprates is a key step towards the elucidation of a high-Tc

mechanism. By a quantitative comparison with a recent in situ angle-resolved photoemission spectroscopy
measurement in doped 1D cuprate chains, our simulation identifies a crucial contribution from long-range
electron-phonon coupling beyond standard Hubbard models. Using reasonable ranges of coupling
strengths and phonon energies, we obtain a strong attractive interaction between neighboring electrons,
whose strength is comparable to experimental observations. Nonlocal couplings play a significant role in
the mediation of neighboring interactions. Considering the structural and chemical similarity between 1D
and 2D cuprate materials, this minimal model with long-range electron-phonon coupling will provide
important new insights on cuprate high-Tc superconductivity and related quantum phases.
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The origin of high-Tc superconductivity in cuprates
remains one of the greatest mysteries in condensed matter
physics [1–4]. The microscopic mechanism is believed to
be related to the strong correlations represented by the
Hubbard model [5–7]. Although numerical simulations
using this model have reproduced some observations in
cuprates, such as antiferromagnetism [8], spin and charge
stripe phases [9–12], and strange metallic behavior [13–
15], the most significant phase—high-Tc d-wave super-
conductivity—remains an enigma. To date, numerical
evidence for quasi-long-range-ordered superconductivity
has been reported for specific systems and methods [16–
20], but the exact solutions with cylinder geometry always
reveal a coexistence of the charge order with comparable
strength, and superconducting correlations progressively
decay on shorter length scales as the numerical cluster size
increases [21–24]. This contrasts sharply to the robust high-
Tc superconducting phases observed in a large family of
cuprate compounds. Increasing experimental evidence in
the low-energy regime, e.g., polaronic dressing near half-
filling [25] and lattice dressing effects that manifest as
kinks or replica bands in photoemission measurements
[26–32], has suggested that small ingredients missing from
the Hubbard model may have an outsized impact that can
dramatically tip the balance towards some instability.
To understand models with multiple degrees of freedom,

which all play a significant role at low energies, presents
technical challenges in dealing with the coexistence of

strong correlations and quantum fluctuations [33,34],
intertwined instabilities, and microscopic competition
[35,36]. Theoretical calculations in 2D are limited by the
rapid increase of Hilbert-space dimension and entangle-
ment with system size. Hubbard-like correlated models in
2D, and in the thermodynamic limit, have yielded only
limited rigorous results. An alternative approach to better
understand the problem may lie in an examination of the
microscopic ingredients necessary to describe 1D cuprate
analogs with comparable structural and chemical environ-
ments [37–39].
With better control of theory in 1D systems, quantitative

comparisons to experiment can be made with higher
fidelity, which enable a determination of the most signifi-
cant missing microscopic ingredients. Recently, in situ
molecular beam epitaxy and angle-resolved photoemission
techniques have enabled a study of the single-particle
spectral function across a range of doping in 1D cuprate
chains [40]. These experiments have revealed an anoma-
lously strong “holon folding” near kF with the same
velocity as the holon, which reflects interactions in the
charge channel. The intensity of this holon folding spectral
feature cannot be captured in simulations of the typical
single-band Hubbard model. Only by adding a substantial,
attractive, near-neighbor interaction to the model can
the theoretical simulations well explain the experimental
observations [40]. Because of the repulsive nature of
the electrostatic interaction between electrons, such an
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attraction must be mediated by a virtual process that may
involve degrees of freedom not present in the single-band
electronic model. This interaction is anomalously strong,
far exceeding the effective t2=U density interaction term
obtained by a Schrieffer-Wolff transformation of the
Hubbard model. Motivated by existing experimental evi-
dence for strong lattice effects in cuprates, a possible
explanation may lie in the coupling between electrons
and phonons (e-ph), although this still lacks a quantitative
demonstration.
Here, we demonstrate that the experimentally observed

strong attractive interaction V can be addressed naturally
in a model that includes a reasonable, long-range e-ph
coupling, determined from Madelung potentials and
Franck-Condon fitting [41]. An intuitive argument is
sketched in Fig. 1, where retardation effects spread the
effective attraction mediated by phonons over longer
distances. While retardation itself gives rise to a weak,
near-neighbor, attractive interaction in the Hubbard-
Holstein model, we find that a long-ranged e-ph coupling
determined by the lattice geometry [i.e., g0, g00, and g000 in
Fig. 1(b)] provides a substantial enhancement necessary to
account for the experimental observations. Considering the
structural and chemical similarity between these 1D chain
and 2D planar cuprate materials, a combination of the well-
known electron correlations present in the Hubbard model
and long-ranged e-ph coupling provides a minimal descrip-
tion on which to base future cuprate studies.
We consider a Hubbard-Holstein-like model with strong

on-site Coulomb repulsion

H ¼ −
X

iσ

tðc†iσciþ1;σ þ H:c:Þ þ U
X

i

ni;↑ni;↓

þ
X

i;j;σ

gijniσða†j þ ajÞ þ
X

i

ωa†i ai ð1Þ

where ciσ (c
†
iσ) annihilates (creates) an electron at site iwith

spin σ and aj (a
†
j ) annihilates (creates) a phonon at site j.

The bare electronic kinetic and potential energies are
parameterized, respectively, by the hopping integral t,
and the on-site Coulomb interaction U, the largest energy
scale in this microscopic model. We ignore the extended
Coulomb interactions originating from electronic repul-
sions, as they are substantially screened by the copper-
oxygen covalent bond. The phonons are treated as Einstein
optical modes with bare frequency ω, and a real-space
coupling gij between the charge density ni on site i and
phonon displacement on site j. A local restriction on the
e-ph coupling gij (i.e., gij ¼ gδij) reduces Eq. (1) to the
standard Hubbard-Holstein model (HHM). With translation
symmetry, periodic boundary conditions, and no disorder,
gij can be expressed as a function of only the relative
distance between sites ji − jj; and it is convenient to
express this in reciprocal space (bosonic momentum) as
gq. In this latter representation, a momentum independent
gq corresponds to a spatially local coupling, while a strong
momentum dependence indicates a longer-range coupling.
The physical properties of the 1D HHM have been

studied by various numerical methods such as exact
diagonalization (ED) [42–45], density-matrix renormaliza-
tion group (DMRG) [46–49], and quantum Monte Carlo
(QMC) [50–53]. Here, we employ a recently developed
variational non-Gaussian ED (NGSED) method [54],
which has been benchmarked with exact QMC results
for the HHM [54,55] and can be extended easily to longer-
range interactions like those considered in Eq. (1). More
importantly, NGSED provides direct information about the
phonon mediated effective interactions V, which can be
used to benchmark parameters extracted from experimental
comparisons [40]. Following the NGSED framework, we
consider a wave function ansatz [54]

jΨi ¼ UplrnðfqÞjψphi ⊗ jψei; ð2Þ

UplrnðfqÞ ¼ ei
1ffiffi
N

p
P

q
fqp−q:ρq ; ð3Þ

as the solution to this strongly correlated model. Here, the
momentum-space electron density ρq ¼

P
iσ niσe

−iq·ri and

phonon momentum operator pq¼i
P

iða†i −aiÞe−iq·ri=
ffiffiffiffi
N

p
.

The right-hand side is a direct product of electron and
phonon states (denoted as jψei and jψphi, respectively),
where jψei is treated as a full many-body state while jψphi
is a Gaussian state [56]. The polaron transformation
UplrnðfqÞ in Eq. (2) entangles the two parts of the wave

(a)

(b)

FIG. 1. (a) Schematic diagram of a local effective interaction
mediated by high-frequency phonons (antiadiabatic limit) and the
nonlocality for finite frequencies. (b) Schematic explaining the
geometry regarding local and nonlocal e-ph couplings, estimated
by the inverse distance between the apical oxygen and corre-
sponding copper atoms.
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function. Note that different from the Lang-Firsov
transformation [57], the fq’s are momentum-dependent
variational parameters determined self-consistently within
NGSED [54].
Within the wave function ansatz of Eq. (2), the ground

state is obtained by iteratively minimizing the energy E ¼
hΨjHjΨi with respect to the electronic wave function jψei
and the variational parameters. With fixed variational
parameters, the effective electronic Hamiltonian is given
by tracing over the phonon state [54]

HðeffÞ
e ¼ hψphjUplrnðfqÞ†HUplrnðfqÞjψphi: ð4Þ

The polaronic dressing is reflected in the electronic

Hamiltonian HðeffÞ
e through its effective kinetic energy

and the additional electronic attraction mediated by pho-
nons (for a detailed derivation see Ref. [54] or the
Supplemental Material [58])

Vq ¼ 2ωjfqj2 − 4gqRe½fq�: ð5Þ

Physically, this effective Vq is sketched in Fig. 1(a):
antiadiabatic phonons (ω → ∞) can be integrated out
and lead to a closed-form interaction Vq ≡ −2g2q=ω. For
a Holstein-type coupling (gq ¼ g), this (antiadiabatic)
interaction is momentum independent, or equivalently,
local in coordinate space. It implies that the lattice potential
mirrors the instantaneous variation of the local electron

density and immediately acts back on that density. The net
effect is a correction to the on-site Coulomb interaction.
However, at finite frequency the phonons are retarded and
carry information about the electron hopping, mediating a
nonlocal interaction [see Fig. 1(a)]. Such a nonlocal
effect already will be present with an infinitesimally small
e-ph coupling [see the Supplemental Material [58] for
discussions].
We first consider the HHMwith only local e-ph coupling

at an intermediate strength λ ¼ g2=ω ¼ 0.95 (such a value,
while serving an illustrative purpose here, will be justified
on physical grounds later), using a 16-site chain with
periodic boundary. After self-consistently solving for the
ground-state wave functions using NGSED, we obtain
the phonon-mediated attraction Vq shown in Figs. 2(a)
and 2(b). With an increasing phonon frequency, Vq exhibits
weaker momentum dependence. To quantify the neighbor-
ing attractive interaction, we extract the spatial distribution
of VðrÞ, which decreases rapidly with distance, resulting in
a near-neighbor interaction∼0.1t. The comparison between
experiment and theory presented in Ref. [40] suggests that a
near-neighbor attraction ∼t is required to account for the
observed holon folding [40], while the attractive inter-
actions presented in Figs. 2(a) and 2(b) are an order of
magnitude smaller than that experimental assessment.
Therefore, the results from a pure HHM fail to provide
a strong Veff ¼ Vðr ¼ 1Þ unless we increase the coupling
to an unphysically large strength.

(a)

(b)

(c)

(d)

(g)(e)

(h)(f)

FIG. 2. Effective interactions obtained from the Hubbard-Holstein model (left) and the Hubbard-extended-Holstein model
(HHMþ g0, right). (a) The momentum distribution of Vq as a function of q, for different phonon frequencies with fixed λ ¼ 0.95.
(c) The spatial distribution of VðrÞ as a function of distance r. Both (a) and (c) are obtained for 12.5% doped HHM. (b),(d) Same as (a),
(c) but for 25% doped HHM. (e)–(h) Same as (a)–(d) but for the Hubbard-extended-Holstein model with g0 ¼ g=

ffiffiffi
5

p
.
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To address the effective interactions within a reasonable
range of e-ph coupling, we note that the electrostatic
interaction has an intrinsically long-range nature. As shown
in Fig. 1(b), for the case where the phonon originates from
the motion of the apical oxygens, the e-ph interaction
strengths at different sites can be approximated through the
geometric distances. The local e-ph coupling strength is
proportional to 1=d0 ∼ 2=a, where a is the lattice constant
for a CuO unit cell. The ratios for subsequent Cu-O
distances can be read off immediately: d1=d0 ≈

ffiffiffi
5

p
,

d2=d0 ≈
ffiffiffiffiffi
17

p
, and d3=d0 ≈

ffiffiffiffiffi
37

p
. The influence on the

electrons in the CuO chain can be approximated by the
potential proportional to 1=dn, so g0 ¼ g=

ffiffiffi
5

p
, g00 ¼ g=

ffiffiffiffiffi
17

p
,

and g000 ¼ g=
ffiffiffiffiffi
37

p
. (Here, we employ the simplest geometric

relation to give an order-of-magnitude estimation. A more
realistic model should also consider the anisotropy, the
dielectric constant, and the integration towards the thermo-
dynamic limit [63].)
The impact of these long-range e-ph couplings is

prominent. Figures 2(e)–2(h) present the momentum and
spatial distribution of Vq, including the influence of g0, for
different phonon frequencies and a fixed λ ¼ 0.95 (i.e., all
coupling strengths scale quadratically with the frequen-
cies). Compared to the local (Holstein) coupling in
Figs. 2(a)–2(d), this effective interaction with nonlocal g0
produces a more momentum dependent Vq, which is further
amplified for small phonon frequencies. In real space, this q
dependence corresponds to a nonlocal VðrÞ. Therefore, the
near-neighbor effective interaction Veff obtained in the
Hubbard-extended-Holstein model increases for two rea-
sons: (1) the additional g0 increases the strength of the
interaction mediated by phonons; (2) g0 provides a direct,
nonlocal interaction between electrons and phonons. The

effective VðrÞ for both 12.5% and 25% doping have
comparable values, as it describes how phonons dress
neighboring electrons and mediate local attraction, with
little relevance to other electrons. This observation is
consistent with experiments, in the sense that independent
fittings of all spectral functions for different doping levels
result in an almost uniform value of the near-neighbor,
attractive interaction V ¼ −t [40], which lends further
support to the ideas presented here that phonons are
ultimately responsible for this attraction.
Armed with knowledge of the significant effects of

nonlocal e-ph couplings, we now investigate the impact
of coupling strengths and the range of the interaction. To
provide a basis for realistic comparison, we fix ω ¼
70 meV in the following discussion, identified in cuprates
with CuO2 plaquette modes [41,64,65]. As shown in
Figs. 3(a) and 3(f), the interaction strength extracted from
the HHM with only local e-ph coupling leads to a small
Veff , impractical if the goal were to reach the experimen-
tally observed value ∼t for reasonable coupling g [40].
However, introducing g0, even restricted by geometric
considerations to g0 ¼ g=

ffiffiffi
5

p
, we find that Veff increases

rapidly with g [see Figs. 3(b) and 3(g)]. A coupling g ∼
200 meV (i.e., λ ∼ 0.95) can produce Veff ∼ −0.5t. More
encouragingly, the addition of next-nearest-neighbor cou-
pling g00 ¼ g=

ffiffiffiffiffi
17

p
further increases Veff ∼ −t for the same

local coupling strength [see Figs. 3(c) and 3(h)]. To address
the full impact of long-range e-ph coupling on the effective
electrostatic interaction, we include also g000 and g0000,
finding that Veff saturates asymptotically [see Figs. 3(d)
and 3(e), and Figs. 3(i) and 3(j)]. Although these couplings
still increase Veff , their impact is not as evident, as it is g0
that connects neighboring electrons and phonons and has
an outsized impact on the nearest-neighbor interaction.

(a)

(f) (g) (h) (i) (j)

(b) (c) (d) (e)

FIG. 3. Comparison of the effective VðrÞ mediated by e-ph coupling of different ranges. (a)–(d) The spatial distribution of VðrÞ as a
function of distance r for a 12.5% doped (a) HHM, (b) 12.5% doped HHMþ g0 (with g0 ¼ g=

ffiffiffi
5

p
), (c) HHMþ g0 þ g00 (with

g00 ¼ g=
ffiffiffiffiffi
17

p
), (d) HHMþ g0 þ g00 þ g000 (with g000 ¼ g=

ffiffiffiffiffi
37

p
), and (e) HHMþ g0 þ g00 þ g000 þ g0000 (with g0000 ¼ g=

ffiffiffiffiffi
65

p
). The phonon

frequency is fixed at ω ¼ 70 meV. (f)–(j) Same as (a)–(e) but for 25% doping.
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To better visualize the influence of e-ph coupling with
different ranges and strengths, we extract the Veff from
Fig. 3 and plot the dependence on g in Fig. 4. With the
asymptotically converged Veff , involving long-range cou-
pling effects, we conclude that realistic e-ph coupling
corresponding to experimental observations, and falling
within the scenario presented here, should be
g≲ 185 meV. Such a value is consistent with estimates
from Madelung potential calculations and Franck-Condon
fitting in another quasi-1D cuprate compound [41], sug-
gesting that long-range e-ph can account adequately for the
anomalously strong near-neighbor attraction derived from
recent experiments [40]. If one further considers the
extended Coulomb interaction arising from electronic
repulsion, the total Veff may be corrected slightly by
∼0.2t [66], within the error bar of experiments. Taking
the parameters t ¼ 600 meV and ω ¼ 70 meV extracted
from experiments, this e-ph coupling corresponds to
λ ¼ 0.81, which is of moderate strength in correlated
materials. This phonon-mediated Veff is an order of
magnitude stronger than that originated from the
Schrieffer-Wolff transformation of the Hubbard model.
Note that the minimal model adopted in the photoemission
experiment [40] included only nearest-neighbor Vðr ¼ 1Þ.
If one were to consider even longer-range neighboring
attraction Vðr > 1Þ, the corresponding g to provide a good
fit would be even smaller.
To summarize, we conducted a systematic study of the

Hubbard-extended-Holstein model and investigated the
impact of phonon frequency and long-range e-ph coupling

on the effective electronic attraction VðrÞ. Taking the e-ph
coupling parameters extracted from existing studies of 1D
cuprate materials, our simulation gives rise to an anoma-
lously strong near-neighbor attractive interaction (V ∼ −t),
consistent with recent in situ angle-resolved photoemission
experiments [40]. Our work has uncovered a significant
missing ingredient in the microscopic description of 1D
cuprate chains; and we have developed a minimal model
that captures the essential experimental features. More
generally, the similarities between 1D and 2D cuprates
may be exploited to extend our conclusions to high-Tc
cuprate materials and the d-wave pairing, with limited
corrections to model parameters. Future systematic DMRG
and QMC studies are promising to extend the conclusion
towards superconductivity.
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